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The equations and self-similar solutions of the problem of the spreading of a 
thin film of non-Newtonian liquid over a horizontal plane with nonlinear vari- 
ation in liquid flow over time are analyzed. The case of an infinite plane 
and a narrow gap between vertical walls are considered. 

!. Spreadin~ of a Thin Film over an Infinite Plane 

In describing the flow in films of many materials - such as dye lasers, petroleum 
films, thin layers of polymer solutions and melts, extruding magma, etc. - the non-Newtonian 
properties of these media must be taken into account. For slow flows, the dependence of 
the viscosity on the rate of shear is of most importance. Below, analysis is confined to 
the role of this non-Newtonian feature of real liquids (neglecting the compressibility). 

The problem of spreading of a thin film may be simplified in the presence of a small 
parameter E ~ H/L, the ratio of the characteristic film thickness H to the characteristic 
horizontal scale L. Reducing the spatial coordinates, the horizontal and vertical velocity 
components, the time, the amount by which the pressure exceeds the atmospheric value, and 
the viscosity to dimensionless form by means of the scale factors H, L, U, sU, L/U, gH, and 
D, the incompressibility condition (unit density is assumed) and dynamic equations may be 
written in the following dimensionless form 
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The d e t e r m i n i n g  r h e o l o g i c a l  e q u a t i o n  a d o p t e d  h e r e  i s  t h e  s i m p l e s t  common g e n e r a l i z a t i o n  o f  
t h e  n o n l i n e a r  o n e - d i m e n s i o n a l  r e l a t i o n  be tween  t h e  s h e a r  s t r e s s  and t h e  s h e a r  r a t e  �9 = D(u165  
u = f ( T ) ,  a g e n e r a l i z a t i o n  in  which  t h e  s t r e s s  and d e f o r m a t i o n - r a t e  t e n s o r s  a r e  c o a x i a l ,  
and t h e  p r o p o r t i o n a l i t y  f a c t o r  - t h e  v i s c o s i t y  - depends  o n l y  on t h e  q u a d r a t i c  i n v a r i a n t  o f  
t h e  d e f o r m a t i o n - r a t e  t e n s o r  [ 1 ] .  

Suppose  t h a t  a t  a smooth s o l i d  s u r f a c e  z = 0 a d h e s i o n  c o n d i t i o n s  a p p l y :  u = O, w = 0 
( i . e . ,  s l i p  i s  n o t  t a k e n  i n t o  a c c o u n t ) .  At t h e  f r e e  s u r f a c e  z = h ( x ,  t ) ,  c o n t i n u i t y  o f  t h e  
normal  ( t a k i n g  a c c o u n t  o f  s u r f a c e  t e n s i o n )  and t a n g e n t i a l  s t r e s s ,  t o g e t h e r  w i t h  t h e  k i n e m a t i c  
c o n d i t i o n ,  l e a d s  t o  t h e  f o l l o w i n g  d i m e n s i o n l e s s  r e l a t i o n s  

p, -- p = We v2h + 0 (e2), We ~ 
gL ~ 

T+O(~2) =-0, ~-~1(10~-~zu ! Ou Oh 
. Oz ' c~t + u V h = w '  ( z = h ) .  
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Here �9 denotes the horizontal shear-stress vector. 

Consideration is confined to the first approximation, omitting all terms of the equa- 
tions with the small parameter e (including those with the product g Re). In this noniner- 
tial approximation (g Re << i), the motive force is the horizontal pressure gradient due to 
the horizontal difference in film thickness, and is balanced (when ~ ~ i) by viscous fric- 
tion. The flow rate and the shear-stress vector are expressed here in terms of the height 
of the surface h(x, t) (below, only the dimensional variables denoted by the same symbols 
are used) 

u := [hFo ( % )  - -  ( I t - -  z) Fo (~)1 ~/~, 

w : :  V {(t~ - -  z)  u - -  [h2F1 ( '%)  - -  (h  - -  z) z F1 (~)1 ~/T}, 

,c = - -  (h  - -  z)  V ( g h  - -  ov2h), ~ ~ TIz=0, 
1 

0 

whereas  t h e  f u n c t i o n  h ( x ,  t )  d e s c r i b i n g  t h e  p o s i t i o n  o f  t h e  unknown f r e e  bounda ry  s a t i s f i e s  
t h e  e q u a t i o n  

Ot - -  V h2F1 (~w) "% . . . . . . . .  , ~ ,  = - -  h V ( g h  - -  ev~h). ( l )  

Here  and be low,  F~( 'r)  d e n o t e s  t h e  i n t e g r a l  moments o f  t h e  r h e o l o g i c a l  f u n c t i o n  f ( ' c ) ,  and 
~w d e n o t e s  t h e  t a n g e n t i a l  s t r e s s  a t  t h e  h o r i z o n t a l  s u r f a c e .  

Tak ing  i n t o  a c c o u n t  t h a t  t h e  c o n t r i b u t i o n s  o f  t h e  g r a v i t a t i o n a l  f o r c e  and t h e  s u r f a c e  
t e n s i o n  on t h e  r i g h t - h a n d  s i d e  o f  Eq. (1 )  a r e  n o t  a d d i t i v e  in  t h e  c a s e  o f  a n o n l i n e a r l y  v i s -  
cous  l i q u i d ,  t h e  s u r f a c e  t e n s i o n  w i l l  be n e g l e c t e d  be low,  assuming  l a r g e  f i l m s  (We << 1 ) .  
Then t h e  s i m p l i f i e d  e q u a t i o n  f o r  h d i f f e r s  o n l y  in  n o t a t i o n  f rom t h a t  d e r i v e d  in  [ 2 ] .  

A r e m a r k a b l e  p r o p e r t y  o f  t h i s  n o n l i n e a r  e q u a t i o n  i s  t h e  e x i s t e n c e  o f  s o l u t i o n s  t h a t  r e -  
main finite for any finite time. Analysis of such solutions in the vicinity of the edge of 
the spreading film is possible in sufficiently general form. In the course of a short time 
interval, a small section of the boundary may be regarded as plane and moving at constant 
velocity v 0. Then the derivative 8/0t is replaced by -v08/~x and the equation for h may 
readily be integrated once: v0 ~ hF1(~w), ~w = -ghSh/Sx. 

In the model approximation of a nonlinear non-Newtonian liquid (0 < ~n < ~) and a New- 
tonian viscous liquid, in particular (n = i, k = ~0) 

f(~)-=- , Fz(T)---- l + n ( l §  f (~)' 

the equation for h may readily be integrated a second time in explicit form. As a result, 
the following expressions are obtained close to the edge of the film (when x0 - x << x0 ; 
h = 0 when x e 0) 

• ( 2 n + l )  = 
h "+2~L(t~+2) • (xo--x) ,  z ~ - ~ 7 ,  •  vo , (2 )  

g n 

i.e., the free surface at the edge of the film forms a 90 ~ angle with the horizontal sub- 
strate (neglecting the surface tension, Van der Waals forces, etc., but then the given asymp- 
totes are only meaningful at some distance from the edge; immediately at the edge, special 
consideration is required because e is large), and the shear stress increases on approaching 
the edge. The film thickness at the edge changes more sharply for dilatational liquids (n > 
i) and more smoothly for pseudoplastic materials (n < i) than for a Newtonian viscous liquid 
(n = i). The smoothest form (x 0 - x) I/2 corresponds to the limit as n ~ 0. and the limit as 
n + ~ corresponds to a film of uniform thickness with a discontinuity at x = x 0. 

In describing the flow of real liquids, a power law may only be satisfactory in a lim- 
ited range of stress (and velocity). However, since large stress is attained close to the 
edge of the film, it may be applicable, for example, for such liquids as highly viscous melts 
and solutions with large polymer concentrations. On the other hand, at large shear stress, 
in many non-Newtonian liquids (dilute polymer solutions, suspensions of solid particles, 
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etc.), conditions of "second Newtonian" viscosity N~ may be attained (in contrast to highly 
viscous liquids), so that the form of the film at the edge is also "Newtonian" - Eq. (2) 
with n = i, k = N~ = const. In some cases, the form of the film may be expected to reflect 
the appearance of both asymptotes simultaneously, with the formation of a "Newtonian precur- 
sor" at the edge of a film of non-Newtonian liquid. 

The coordinate and velocity of motion of the edge of the film x0, v0 = dx0/dt remain 
indeterminate functions of the time, within the context of the foregoing; they may be found 
by accurate solution of the complete problem for h. However, some estimates may be made 
without the need for accurate solution, in the case of a specified liquid flux 

Xo 

Q(t)  = j" d x x P - l h  = Qo H , (3) 
0 

a r r i v i n g  a t  a symmet r i c a l l y  spread ing  f i l m  (p = 1 and 2 wi th  p lane  and c y l i n d r i c a l  symmetry).  
Using the  edge asymptote  in Eq. (2) fo r  approximate d e s c r i p t i o n  of  the  form of the  whole 
film, a differential equation for h is obtained from Eq. (3), with the solution 

Xo = ~o0 , vo = ~ - ~ -  , 0 = al,  au = gk O~+2, 
(4)  

= ( _ _ ) n B = + Z  ( n + 3  ) ~7 v (n@2) 2n-t-1 ~ P , - -  , [~_ , 
n n + 2 v 

p ~ - ~ n @ q ( n + 2 ) ,  v - - - - n + l @ p ( n + 2 ) .  

This approximate result is in good agreement with the consequences of accurate self-similar 
solution of Eqs. (6) and (7). For example, when q = 0, n = p = i, it follows that t0 -- 1.06, 
whereas from the accurate solution $0 -- 1.13 (a difference in the third figure!). 

The parameter 6 characterizing the variation in x 0 over time is found to be larger for 
dilatational liquids (n > i), and smaller for pseudoplastic liquids, than for Newtonian liq- 
uids, when q < 1 + 2p. When z < 1 + 2p, the situation is reversed. When q < p + i/(n + 2), 

is less than one, and the velocity of motion of the film edge falls with time (more slowly 
for pseudoplastic media). 

The initial problem of the spreading of a film with h = 0 when t = 0, x > 0, with a 
specified liquid flux of the type in Eq. (3) at the coordinate origin, has a self-similar 
solution h = t~(x/t 2) for an arbitrary non-Newtonian viscous liquid, if q = 1 + 2p. However, 
this solution is only of limited interest, generally speaking. Its characteristic spatial 
scales are H ~ t, L ~ t 2, and the dimensionless parameters vary as follows: r ~ l/t, eRe ~ 
t/v 2. Consequently, the inertial dimensionless parameter s Re increases over time even for 
an ordinary viscous liquid, and in a finite time the noninertial condition used in deriving 
Eq. (i) for the film thickness no longer holds. 

More meaningful self-similar solutions of the given initial problem with the condition 
in Eq. (3) are possible in the particular case of a nonlinear liquid for which Eq. (i) takes 

the form 

Oh n ;' g 1 ~/'~ (h 2+~/'~ 
Ot - 2~ + i [ T /  v Iv,q~/~-~v~,). (5)  

This equation coincides with the "equation of turbulent filtration," various self-similar 
solutions of which were analyzed in [3]. 

The self-similar distribution 

X 
h = Q__t O~q~(~), ~ -  0 R ' 8 at, (6) 

aq 

i s  a s o l u t i o n  of  Eq. (5) wi th  the  c o n d i t i o n  in Eq. (3 ) ,  i f  ~ and the  d imens iona l  m u l t i p l i e r  
a are  de termined from Eq. (4) and a from the  formula 

o~ = q - -  ~p = (n -}- 1 ) q - - r i p  , 

n . -+- l@p(n+2)  

while the dimensionless function~(~) satisfies the equation 
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0 

For the self-similar solution with the given a, ~, the dimensionless parameter e always 
decreases over time, while the product eRe decreases only when q < q0 - P + (P + 2)/(n + 3). 
Under this condition, the spreading of the liquid is asymptotically (t § ~) noninertial. 
In the opposite case q > q0 (for a Newtonian liquid, q = 7/4 and 3 with one-dimensional and 
axisymmetric spreading, respectively), noninertial behavior is possible only for a finite 
time. 

In the absence of an external liquid flux (q = 0), when its volume is conserved, the 
equation for (~) admits of simple finite (~p = 0 when $ e $0) analytic solution (cf. [2, 4]:) 

1 
l~n+l __ ~n+l 

(~) = C ~ 0  ) ~+2, ~ < ~o; 

2 ( B p n+----2-3- - 
n + l  ~ ' n + l  ' n + 2  , C 

Since q = 0 < q0 he re ,  t h i s  f u n c t i o n  corresponds to  the  a s y m p t o t i c a l l y  n o n i n e r t i a l  s o l u t i o n  
in Eq. (6) .  

2. Constrained Spreading over a Smooth Horizontal Surface 

Now consider the spreading of a nonlinearly viscous liquid over a horizontal plane 
when there are bounding vertical side walls. In the case which is simplest for analysis - 
a narrow gap between walls with d - 6H << H; as before, the film is assumed to be thin: 
H - eL << L - the horizontal shear stress �9 = rxy due to the friction at the vertical walls 
takes on the principal role. The asymptotically simplified (as in Sec. i, but with two 
small parameters ~, 6) equations and boundary conditions take the following form, neglecting 
inertial forces (e62Re << i) and surface tension (We << i) 

O p _  & a p _ o ,  @ = ( O-~u I Ou 
Ox c)~ ' Oy "az - -  g' ~=  ~ ~ - c)y ' 

axa---u-u + avay + aWaz = o, (z - p=)I~=h = o, ~ + ( u --ax - - w  .=~ = o, 

0 = uly=o = uly=~ = uiz=0 . . . .  

hence the  s t r e s s  and v e l o c i t y  may be expressed  in terms of  the  f i l m  t h i c k n e s s  h(x ,  t )  as f o l -  
lows, where <...> denotes averaging over the gap between the vertical walls 

Oh(  d ] '~ y=o, 

,---g ftT-y , ] 

u = --9 Fo(l~l)---z fo (I'%1) , 

d Oh 
< u > = - -  T e,. ( k d )  s g .  a--i:-- 

and the following equation is obtained for h(x, t) 

Oh . _  d a (hFl([%l)sgn O h  i gd Oh t 
at  2 dx a x ] ' I T d = T  ~ ' ( 8 )  

Close to  the  edge of  the  sp read ing  f i l m ,  a f t e r  r e p l a c i n g  ah/Bt  by -v08/~x,  the  equa t ion  
i s  i n t e g r a t e d  to  give  

2vo gd Oh 
F ,  (IT,,i) = , l~,,I - 

6 2 Ox 
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which shows that, for an arbitrary non-Newtonian liquid close to the edge of the film (x 0 - 
x << x 0) in a narrow gap, the shear stress does not change with increasing distance from the 
edge, and the film thickness varies linearly 

h ~ ~, (Xo - -  x),  v -"~ 
�9 ,---- Xo. ( 9 )  

In contrast to the case of an infinite liquid, the free surface at the edge of the film in 
a gap forms an acute angle with the horizontal substrate. 

The initial problem with h = 0 when t = 0, x > 0, for Eq. (8), in the case where there 
is an incoming flux as in Eq. (3) at the coordinate origin, admits of self-similar solution 
of the form h = t~(x/t) for any non-Newtonian liquid, if q = 2. It is readily evident that 
the linear distribution in Eq. (9) with x 0 = v0t, v 0 = const is an accurate solution if 
Yv02 = 2Q0 and 2v 0 = dFl(ygd/2). For the given self-similar solution H ~ t, L ~ t, and 
hence s ~ t o , 6 ~ l/t, E62Re ~ i/(tvi). In contrast to the case of nonconstrained spread- 
ing over a plane (Sec. i), the noninertial condition (s62Re << i) is asymptotically (as t + 
~) true here for a large class of liquids (for a Newtonian liquid with constant viscosity, 
in particular), 

For a nonlinear liquid, Eq. (8) reduces to the equation 

ot 2 , , + 1  " V - -  - s g n  - - - - -  (i0) 
, I Ox] ox 

and under the condition in Eq. (3) - for a Newtonian liquid with n = i, this problem coin- 
cides with that analyzed in [5] - has a self-similar solution of the form in Eq. (6) with 
the coefficients 

~ - -  q ( n +  l ) - - tL  , ~ _  q @ n  , a ~'+~=---g d~+~Q o (11) 
l z + 2  n + 2  k 

and a dimensionless function ~p($) satisfying the relations 

, i' d~q~(~) = 1. 

tion 
In the particular case when q = 0, the latter relation admits of simple analytical so!u- 

2 

m(~) - -  C ( ~  +~ - -  ( '+~),  ~ < ~ o ,  

( 2 / "  + 1 ) "  1) ..... +2 ~ ) 2 , (21~ + (' ;~ ' 2 "+~ . . . . . .  ~o' ~ ;zq- ] 11+2 1 2 

(12) 

in which the liquid spreads with a mean (over the gap) velocity <u> = nx/t(n + 2) and at the 

edge of the film 

X0 

[cf. Eq. ( 9 ) ] .  

I 

-T ) (xo - -  x ) ,  Vo - h ~  (ivo 2n 1 "~ '~ 2h n 
\ n gd ~+~ ~ q- 2 

For the given self-similar spreading of a film of nonlinear liquid, H ~ t ~, L ~ t~ with 
and ~ as in Eq. (i0), and E ~ t~-~, 6 ~ t -~, a62Re ~ 6s 2/n. If the small parameters r 6 

are not to increase asymptotically (as t § ~), it is necessary that 2 e q 2 n/(n + i) (under 
this condition, the inertial parameter e62 Re is also small). The limit q = 2 corresponds 
to the above-discussed solution of form t#(x/t). The analytical solution in Eq. (12) ob- 
tained when q = 0 does not satisfy the given condition. For such solutions - and, in gen- 
eral, for solutions with q < n/(n + I) - decrease in film thickness leads to increase in 6 
over time. Ultimately, it is found that the condition d = 6H << H used in deriving the above 
simplified equations for the film thickness does not hold. 

NOTATION 

u, v, w, velocity components; u, horizontal velocity vector; 7, horizontal-gradient 
operator; q, viscosity; p, pressure; g, acceleration due to gravity; n, exponent of flow 
power law; k, consistency of liquid; Re, Reynolds number; s = H/L; 6 = d/H, small parameters; 
We, Weber number; h, thickness of liquid film; x, horizontal coordinate vector; z, vertical 
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coordinate; ~, shear stress; Fs integral moments of rheological function f(~); ~w, stress 

at horizontal substrate; ~v, stress at vertical wall; x0, v0, coordinate and velocity of 
motion of film edge; Q(t), liquid influx; ~, ~, self-similarity exponents; ~($), dimensionless 
function of dimensionless argument; B(a, b), beta function; C, numerical constant; d, distance 
between vertical planes. 
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SPREADING OF SMALL LIQUID DROPS ALONG A FLAT SURFACE 

A. S. Romanov UDC 541.24 

We discuss two limiting spreading laws for small drops of a viscous liquid 
which are supported by the experimental data. 

Drops of coolant are sprayed onto a surface in order to obtain "soft" cooling. Calcu- 
lation of the effectiveness of the heat transfer in this case is not possible without a know- 
ledge of the processes of wetting and spreading of the drops adhering to the surface. Be- 
cause of their small size, one can assume that the drops are isothermal with a variable tem- 
perature. 

A phenomenological method of describing the spreading of a partially wetting liquid in 
the viscous regime was given in [i]. In this method an additional body force (equal to the 
gradient of the chemical potential) is introduced into the equations of hydrodynamics. For 
an incompressible liquid under isothermal conditions [2] this approach is equivalent to in- 
troducing an additional "disjoining" pressure [3, 4]. 

The equations of motion of a viscous liquid, written in the approximation of the theory 
of lubrication [5], together with the boundary conditions on the surface of the liquid drop, 
can be solved for the function h(x, y, t) determining the shape of the free surface [6] [x 
and y are Cartesian coordinates in the plane of the solid surface z = 0; t is the time; the 
shape of the free surface of the liquid is given by the equation z = h(x, y, t)]. 

We assume that the shape of the drop is axially symmetric. With no loss of generality, 
we can take the line x = y = 0 as the symmetry axis. Let a(t) be the radius of the circle 
wetted by the liquid on the solid surface z = 0. Then the equation of the line of throe- 
phase contact is x 2 + y2 = a2. For further analysis it will be convenient to introduce po- 
lar coordinates: r 2 = x 2 + y2, ~ = arctg (x/y). By symmetry h = h(r, t). If we then intro- 
duce the "local" coordinate x* = a(t) - r, we find that close to the surface of the drop 
(x* § +0) the equation for the shape of the free surface reduces to the corresponding equa- 
tion for the "plane" case considered in [i], which can be written (in dimensionless vari- 
ables) 

1 . . . .  02~ + R  0 u = 0 ,  u~---- da* ( 1 )  
-2-- o~  -~j [~o(~, ~)I ~ ~ at* 

Hare L = /o~pg is taken as the unit of length; T = 3 pL/o is the unit of time; B = a 2 - 02 
0, ~(q, t) ~ 0 is the angle of inclination of the surface of the drop to the solid surface 
(in the approximation considered here ~2 ~ (Sh/Sx,)2); @ is the equilibrium value of the 
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